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Work General Characteristics 

Research Topic Relevance 

Various unmanned aerial vehicles are developed and used actively in the 

modern world. Helicopters with several groups -copters – have gained 

popularity. They are applied for exploring, photogrammetry, freight 

transportation. The development of various algorithms for such drone control 

are pursued [1].  

Mracek C., Cloutier J. [2] and Pearson J.D. [3] in their works were one of 

the first to represent nonlinear dynamic systems in pseudolinear form with 

matrix elements depending on system state - State Dependent Coefficients 

(SDC). 

Quadrate cost function is applied rather often after the system 

representation in the proposed by the authors form for control synthesis. This, 

rather spread practice, nevertheless, leads to the use of Riccati equation solution 

with parameters depending on a state in the control algorithm - State Dependent 

Riccati Equation (SDRE) [4]. 

 The finding of Riccati equation solutions is itself a difficult task at the 

expense of limitations on onboard microcontroller performance. 

The given work proposes control algorithm using SDRE method and 

capable to be fulfilled on relatively low-performance microcontrollers in 

quadcopter stabilization task solution. 

Quadcopter characteristics can change in a flight, for example, it can drop a 

load or be damaged. These changes may negatively rebound upon the 

effectiveness of stabilization system work. The given dissertation research offers 

algorithm that assesses the change in drone characteristics and tries to fend them 

off. 
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Besides afore-described problems, the effects can arise related to 

controlling impact delay and to obtaining the data on a state which strongly 

affect flight quality at drone flight [5]. The refuse from delay effect record at 

regulator synthesis can lead to insufficient effectiveness of control algorithm 

work [6]. 

Besides afore-described tasks, the one of quadcopter collective interactions 

represents an interest [7]. The task of enemy UAV collective interception is 

considered in the dissertation research. The suppositions on stabilizing regulator 

synthesis in the conditions of action in the system of delay and after-effect 

impacts are given. 

Research Subject – quadcopter control system, which functions in the 

conditions of incomplete information on current state, drone characteristics and 

its interaction with an environment. 

Research Purpose - the development of design methods for stabilizing 

nonlinear regulators and observers, acting in the conditions of various interval 

uncertainties of system parameters, differing from known ones, in the task of 

drone control.  

Research Tasks: 

1. To develop methods and algorithms, that’re comfortable for 

realization on microcontrollers, for nonlinear regulator synthesis, that're 

also based on Riccati equation with the parameters depending on a state; 

2. To develop object state observer that effectively acts in the 

interval uncertainty conditions of various nature; 

3. To investigate delay effect impact and consequences on a 

system and to work out algorithm of robust stabilization, allowing to deal 

with given effects; 
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4. To compare the obtained algorithm for filtration with known 

algorithms; 

5. To compare known linear regulators with obtained algorithms; 

6. To investigate the problem of control of several agents in 

pursuit task. 

Scientific Novelty and Significance. 1)  Design and realization algorithms for 

nonlinear stabilizing regulators for nonlinear dynamic systems describing 

quadcopter dynamics are developed; 2) Algorithm for the synthesis of adaptive 

filter, allowing to pursue identification of nonlinear dynamic system parameters, 

is carried out; 3) Robust regulator synthesis algorithm has been obtained 

allowing to stabilize system that’s under influence of impacts of after-effect and 

delay in control; 4) Control task for several drones is considered as the problem 

of optimal control, i.e. differential game with null sum. 

Work Practical Significance. The results can be used at solving stabilization 

and filtration tasks on quadcopter control onboard systems. 

Reliability of Results is confirmed by strict mathematical conclusions and 

numeric mathematical modelling. 

Author’s Own Contribution is in the development of methods and algorithms 

of control law design, of methods and algorithms of the assessment of being 

observed nonlinear system as well as in the pursuing of numeric experiments. 

Research Methods include proved methods for dynamic system research and 

the synthesis of regulators. There are used, in particular: methods of stability and 

control theories as well as analytical design methods for optimal systems. The 

check of obtained differential equations was held in software package Maple. 

Computer modelling was pursued in MATLAB Simulink package. 

Work Approbation. Dissertation research results were reported on the 

following conferences:  
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1. Semion A.A. Nonlinear Adaptive Filter and Control of Quadcopter // 

Moscow Workshop on Electronic and Network Technologies (MWENT-

22), Moscow 9-11 June 2022; 

2. Semion A.A. Presnova A.P. Optimal Control of Car Active Suspension 

Control under Delays // XVI International Conference "Stability and 

Oscillations of Nonlinear Control Systems" (Pyatnitskiy's Conference) 

June 1 - 3, 2022, ICS RAS, Moscow, Russia; 

3. Semion A.A. Adaptive coordinate control of nonlinear uncertain object // 

13th All-Russia control conference (VSPU-2019) (Moscow), 17-20 June 

2019; 

4. Semion A.A. A method for realization of nonlinear state-dependent 

coefficients regulators based on microcontroller memory // Moscow 

Workshop on Electronic and Network Technologies Together with 

Siberian Conference on Control and Communication (Moscow) 14-16 

March 2018; 

5. Semion A.A. Inverted pendulum control with state-dependent coefficients 

regulator // Intercollegiate Scientific-Technical Conference of Students, 

PhD Students and Young Specialists named after Armenskiy E.V. 

(Moscow) 19 February – 01 March 2018; 

6. Semion A.A. Estimation of memory usage in implementation of nonlinear 

regulators with state-dependent coefficients in quasilinear control systems 

// International Scientific Conference of Students, PhD Students and 

Young Scientists “Lomonosov-2017” (Moscow) 10-14 April 2017. 

Work Short 

Introduction narrates the analysis of work relevance and novelty; the work 

abstract is presented. 

First Chapter formulates quadcopter stabilization task. 
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Figure 1. Quadcopter body frame  

 Nonlinear dynamic system is given that describes quadcopter rotation in a 

space in quaternion algebra. 

Quadcopter dynamics can be described by the following nonlinear systems: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑑

𝑑𝑡
𝑝(𝑡) =

1

𝐼𝑥
[𝑢1(𝑡) − (𝐼𝑧 − 𝐼𝑦)𝑞(𝑡)𝑟(𝑡)]

𝑑

𝑑𝑡
𝑞(𝑡) =

1

𝐼𝑦
[𝑢2(𝑡) − (𝐼𝑥 − 𝐼𝑧)𝑝(𝑡)𝑟(𝑡)]

𝑑

𝑑𝑡
𝑟(𝑡) =

1

𝐼𝑧
[𝑢3(𝑡) − (𝐼𝑥 − 𝐼𝑦)𝑝(𝑡)𝑞(𝑡)]

𝑑

𝑑𝑡
𝜆0(𝑡) =

1

2
[−𝑝(𝑡)𝜆1(𝑡) − 𝑞(𝑡)𝜆2(𝑡) − 𝑟(𝑡)𝜆3(𝑡)]

𝑑

𝑑𝑡
𝜆1(𝑡) =

1

2
[𝑝(𝑡)𝜆0(𝑡) + 𝑟(𝑡)𝜆2(𝑡) − 𝑞(𝑡)𝜆3(𝑡)]

𝑑

𝑑𝑡
𝜆2(𝑡) =

1

2
[𝑞(𝑡)𝜆0(𝑡) − 𝑟(𝑡)𝜆1(𝑡) + 𝑝(𝑡)𝜆3(𝑡)]

𝑑

𝑑𝑡
𝜆3(𝑡) =

1

2
[𝑟(𝑡)𝜆0(𝑡) + 𝑞(𝑡)𝜆1(𝑡) − 𝑝(𝑡)𝜆2(𝑡)]

 (1) 

where 𝑝(𝑡) , 𝑞(𝑡) , r(𝑡)  – angular velocities in quadcopter body frame, 

𝜆0(𝑡), 𝜆1(𝑡), 𝜆2(𝑡), 𝜆3(𝑡)  – components of quaternion describing quadcopter 
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rotation in a space. 𝑢1(𝑡) , 𝑢2(𝑡) , 𝑢3(𝑡)  – torques, being created by motor 

rotation difference along x, y, z axes, respectively. 

Second Chapter describes the algorithm of stabilizing regulator with 

parameters depending on a state. 

Being considered nonlinear, controlled and being observed system:  

 

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑥(𝑡)) + 𝐷(𝑥(𝑡))𝑤(𝑡) + 𝐵(𝑥(𝑡))𝑢(𝑡) , 

𝑥(𝑡0) = 𝑥0 

𝑦(𝑡) = 𝐶𝑥(𝑡), 

𝑢(𝑡) ∈ 𝑈, 𝑤(𝑡) ∈ 𝑊, 𝑡 ∈ [𝑡0, 𝑡𝑓], 

(2) 

where 𝑥(∙) ∈ 𝐶1([𝑡0, 𝑡𝑓], 𝑅
𝑛),𝑢(∙) ∈ 𝐶1([𝑡0, 𝑡𝑓], 𝑅

𝑟),𝑤(∙) ∈ 𝐶1([𝑡0, 𝑡𝑓], 𝑅
𝑘). 

Here 𝑥(𝑡) – state of system 𝑥 ∈ Ω𝑥 ;  𝑥0 ∈ Ω𝑥  – system initial state; 𝑦 ∈

𝑅𝑚, 𝑚 ≤ 𝑛 – system output; 𝑢(𝑡)- control; 𝑤(𝑡)− perturbation. 

We shall consider perturbation 𝑤(𝑡) as an effect of some player-enemy 

hindering control task successful implementation. Various perturbations can 

come out as, for instance, various airflows. 

Let introduce cost function for a differential game:  

𝐽(𝑥, 𝑢, 𝑤) =
1

2
lim
𝑡𝑓→∞

∫{𝑦T(𝑡)𝑄𝑦(𝑡) + 𝑢T(𝑡)𝑅𝑢(𝑡) − 𝑤T(𝑡)𝑃(𝑡)𝑤(𝑡)}𝑑𝑡

𝑡𝑓

𝑡0

 (3) 

Let functions and matrices 𝑓(𝑥(𝑡)) and 𝜕𝑓(𝑥(𝑡)) 𝜕𝑥𝑖⁄ , 𝐷(𝑥(𝑡)), 𝐵(𝑥(𝑡)) 

and 𝜕𝐷(𝑥(𝑡)) 𝜕𝑥𝑖⁄ , 𝜕𝐵(𝑥(𝑡)) 𝜕𝑥𝑖⁄ , 𝑖 = 1,⋯ , 𝑛 be continuous along 𝑥 ∈ Ω𝑥 and 

𝑓(0) = 0, moreover, D(𝑥(𝑡)) ≠ 0, B(𝑥(𝑡)) ≠ 0, 𝑥(𝑡) ∈ Ωx. 

At the fulfillment of given suppositions and SDC linearization use, initial 

nonlinear system (2) can be represented in the form of the model: 
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𝑑

𝑑𝑡
𝑥(𝑡) = 𝐴(𝑥(𝑡))𝑥(𝑡) + 𝐷(𝑥(𝑡))𝑤(𝑡) + 𝐵(𝑥(𝑡))𝑢(𝑡), 

𝑥(𝑡) = 𝑥0, 𝑦(𝑡) = 𝐶𝑥(𝑡), 
(4) 

where control laws 𝑢(𝑡) and 𝑤(𝑡) are defined in the following way:  

𝑢(𝑡) = −𝑅−1𝐵T(𝑥(𝑡))𝑆(𝑥(𝑡))𝑥(𝑡), 

𝑤(𝑡) = 𝑃−1𝐷T(𝑥(𝑡))𝑆(𝑥(𝑡))𝑥(𝑡). 
(5) 

Positively defined matrix 𝑆(𝑥(𝑡))  is the solution of matrix equation of 

Riccati type with parameters depending on a state 

𝑆(𝑥(𝑡))𝐴(𝑥(𝑡)) + 𝐴T(𝑥(𝑡))𝑆(𝑥(𝑡))

− 𝑆(𝑥(𝑡))[𝐵(𝑥(𝑡))𝑅−1𝐵T(𝑥(𝑡))

− 𝐷(𝑥(𝑡))𝑃−1𝐷T(𝑥(𝑡))]𝑆(𝑥(𝑡)) + 𝐶T𝑄𝐶 = 0 

(6) 

The given control algorithm assumes that quadcopter onboard computer is 

capable to find equation (6) solution with sufficient speed and online. The 

algorithms of Riccati equation solution search may be effective insufficiently 

because of the narrowness of calculation resources of quadcopter onboard 

electronics at the moment of work introduction. It’s proposed to calculate 

preliminary with predetermined accuracy all necessary solutions of equation (6), 

dividing the space of states into a net and calculating gain coefficients in this net 

crossings. 

Schematic representation for state space elements which’re responsible for 

quaternion vector part is given on Figure 2. 
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Figure 2. Net in a sphere  

Dissertation research put forward proposal on organizing the storage of 

coefficients in the memory of controlling device as massive of structures which 

include the value of gain coefficient (𝑅−1𝐵T(𝑥(𝑡))𝑆(𝑥(𝑡)) ). It’s proposed 

additionally to record memory addresses on memory elements with gain 

coefficients for coordinates being nearby in state space. 

The calculations of memory necessary size are given for algorithm 

realization for various accuracies of UAV rotation representation. 

Chapter three considers the design of algorithm for adaptive observer and 

the control which uses adaptation results. Copter’s parameters can change 

during flight, for instance, as a result of load drop or damage.  

Let the parameters of matrix  𝐴(𝑥(𝑡)) in (4) are not exactly known but just 

intervals are known wherein these parameters are. Let suppose that it’s possible 

to divide 𝐴(𝑥(𝑡)) = 𝐴и(𝑥(𝑡)) + A𝛼(𝑡), where 𝐴и(𝑥(𝑡)) – for certain known 

part of matrix 𝐴(𝑥(𝑡)) , and A𝛼(𝑡)  – the part of matrix 𝐴(𝑥(𝑡))  that is not 

known exactly. Then system (4) is being represented in the form of: 
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{

𝑑

𝑑𝑡
𝑥(𝑡) = [𝐴и(𝑥(𝑡)) + A𝛼(𝑡)]𝑥(𝑡) + 𝐷𝜔(𝑡) + 𝐵𝑢(𝑡),

𝑦 = 𝐶𝑥(𝑡) + 𝜂(𝑡),

𝑥(𝑡0) = 𝑥0.

 (7) 

It’s needed to build up the evaluation of useful process 𝑥(𝑡)  on the 

background of noises, according to observations 𝑦(𝑡), and that’s the best in 

terms of cost function: 

𝐽1(𝜀) = 𝑀[Ψ(𝜀(𝑡))] = 𝑀 [
1

2
𝜀T(𝑡𝑓)𝐹𝜀(𝑡𝑓) +

1

2
∫ {𝜀T(𝑡)𝑄𝜀(𝑡)}𝑑𝑡
𝑡𝑓
𝑡0

]. (8) 

Let represent filter structure in the form: 

{
 

 
𝑑

𝑑𝑡
𝑥̂(𝑡) = [𝐴и(𝑥̂(𝑡)) + 𝐴н(𝑡)]𝑥̂(𝑡) + 𝐵𝑢(𝑡) + 𝐿(𝑡)[𝑦(𝑡) − 𝐶𝑥̂(𝑡)]

𝑥̂(𝑡0) = 𝑥̅0,

𝐴н(𝑡0) = 𝐴н
0 = A𝛼(𝑡0)

 (9) 

Here 𝐴н(𝑡)  – additive, adjusted by optimization algorithm,  𝐿(𝑡) =

𝑃(𝑡)𝐶𝑁−1(𝑡) , where matrix 𝑃(𝑡) = 𝑀[𝜀(𝑡)𝜀T(𝑡)]  is the solution of Riccati 

differential equation  

𝑑

𝑑𝑡
𝑃(𝑡) = [𝐴и(𝑥̂(𝑡)) + 𝐴н(𝑡)]𝑃(𝑡) + 𝑃(𝑡)[𝐴и(𝑥̂(𝑡)) + 𝐴н(𝑡)]

T
−

𝑃(𝑡)𝐶T𝑁−1(𝑡)𝐶𝑃(𝑡) + 𝐵𝑊(𝑡)𝐵T, 

𝑃(𝑡0) = 0. 

(10) 

The given equation solution is proposed to be realized online with the rate 

comparable with the dynamics of an object. 

Optimization algorithm design is represented as: 

𝑑

𝑑𝑡
𝛼н(𝑡) = 𝑀 [{

𝜕𝐶𝑥(𝑡)

𝜕𝛼н
}

T

{𝑦(𝑡1) − 𝐶𝑥(𝑡1)}], 

 𝛼н(𝑡0) = 𝛼0, 

 𝑡1 = 𝑡 − 𝛾, 𝛾 ≠ 0 

(11) 

Here 𝛼н(𝑡)- the elements of matrix 𝐴н(𝑡). 

As a control, it is proposed to use a regulator with discretely changing 

parameters that is offered in Chapter Second. 
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Time interval of object functioning can be divided into lapses that are equal 

by longitude, and at each lapse beginning, the corresponding values of  𝑥(𝑡) and 

𝐴и(𝑥) + 𝐴н(𝑡) can be fixed. 

Inside each of the lapse, regulator parameters do not change and are 

presented as 

𝑢𝑖+1(𝑡) = 𝐾𝑖𝑥̂(𝑡) = −𝑅
−1𝐵T𝑆𝑖𝑥(𝑡), 

where 𝑆𝑖 – Riccati equation solution of kind 

𝑆𝑖[𝐴и(𝑥̂𝑖) + 𝐴н(𝑡𝑖)] + [𝐴(𝑥̂𝑖) + 𝐴н(𝑡𝑖)]
T𝑆𝑖 − 𝑆𝑖𝐵𝑅

−1𝐵T𝑆𝑖 + 𝑄 = 0, (12) 

Here 𝑥𝑖  - 𝑥(𝑡) value at the moment 𝑡 = 𝑡𝑖 ,  𝐴н(𝑡𝑖) – 𝐴н(𝑡) value at the 

moment 𝑡 = 𝑡𝑖. 

Time lapse length is chosen in a way that onboard computer has to be in 

time with finding Riccati equation (12) solution. 

Thus, the structure of filtration and control system is organized in the form 

presented on Figure 3. 

 

Figure 3 Flowchart of control system structure 

Forth Chapter considers system, functioning in the condition of delay and 

aftereffect impacts. Such impacts can be revealed, for instance, because of 

delays in circuits of control by copter motors. 

There’s considered the system of kind: 
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𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝜏) + 𝐵(𝑥)𝑢(𝑡, 𝛾), 

𝑥(𝑡0) ∈ 𝑋0, 
(13) 

Where 𝜏 ⊂ 𝑇 ⊂ 𝑅+ - aftereffect value, 𝛾 ⊂ Γ ⊂ 𝑅+ - control delay value. 

Let suppose that 𝑓𝑖(𝑥(𝑡), 𝜏) , 𝑏𝑖𝑗(𝑥(𝑡)) , 𝑖 = 1,… , 𝑛 , 𝑗 = 1,… , 𝑟  – the 

elements of matrices 𝑓(𝑥, 𝜏) and  𝐵(𝑥), respectively, as well as their derivatives 

𝜕𝑓𝑖(𝑥(𝑡))

𝜕𝑥𝑘(𝑡)
, 
𝜕𝑓𝑖(𝑥(𝑡))

𝜕𝑡
 ,  
𝜕𝑏𝑖𝑗(𝑥(𝑡))

𝜕𝑥𝑘(𝑡)
, 
𝜕𝑏𝑖𝑗(𝑥(𝑡))

𝜕𝑡
 are continuous relatively 𝑥(𝑡)  and 𝑡  for 

𝑖, 𝑘 = 1,… , 𝑛, 𝑗 = 1,… , 𝑟. Let represent a control in the form of linear function 

relatively an object state (13), i.e.  𝑢(𝑡, 𝛾) = 𝐾𝑥(𝑡 − 𝛾).  

Let delay and aftereffect values be rather small. Then, using the definition 

of a derivative in null state neighborhood, the system (13) can be presented in 

the form  

𝑑

𝑑𝑡
𝑥(𝑡) = [𝐼 + 𝐴𝜏𝜏 + 𝐵𝛾𝐾]

−1
[[𝐴1 + 𝐴𝜏 + 𝛼1(𝑥(𝑡), 𝜏)]𝑥(𝑡)

+ [𝐵1 + 𝛽1(𝑥(𝑡), 𝛾)]𝑢(𝑡) + ℑ1(𝑥(𝑡), 𝛼1(𝑥), 𝛽1(𝑥), 𝛾)] 
(14) 

Let write down the equation of the first approximation for the system (14). 

𝑑

𝑑𝑡
𝑧(𝑡) = [𝐴 + 𝛼(𝑥(𝑡), 𝜏)]𝑧(𝑡) + [𝐵 + 𝛽(𝑥(𝑡), 𝛾)]𝑢𝑧(𝑡),  

𝑧(𝑡0) = 𝑥0
∗ ∈ 𝑋0. 

(15) 

Here  [𝐴 + 𝛼(𝑥(𝑡), 𝜏)] = [𝐼 + 𝐴𝜏𝜏 + 𝐵𝛾𝐾]
−1
[𝐴1 + 𝐴𝜏 + 𝛼1(𝑥(𝑡), 𝜏)] , 

[𝐵 + 𝛽(𝑥(𝑡), 𝛾)] = [𝐼 + 𝐴𝜏𝜏 + 𝐵𝛾𝐾]
−1
[𝐵1 + 𝛽1(𝑥(𝑡), 𝛾)]. 

Let Ω – set of possible trajectories 𝛼(𝑥(𝑡), 𝜏) and 𝛽(𝑥(𝑡), 𝛾). Let call the 

worst parameters  𝛼∗, 𝛽∗  ∈ 𝜕Ω those ones which at a stable system, no more 

comes to balance point, and which for, unstable system gets large speed.  

The examples of one-dimensional systems having stability (on the left) and 

not having it are presented on Figure 4. Trajectories, marked with dotted line, 

correspond to the trajectories of systems with desirable parameters. 
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Figure 4. Examples of trajectories of one-dimensional stable and unstable 

systems 

We will implement regulator synthesis, i.e. matrix K search, basing on first 

approximation (15) model of object (14), the model is of kind  

 

𝑑

𝑑𝑡
𝑧𝑀(𝑡) = [𝐴 + 𝛼

∗]𝑧𝑀(𝑡) + [𝐵 + 𝛽
∗]𝑢𝑀(𝑡) , 

𝑧𝑀(𝑡0) = 𝑥0. 

(16) 

Let introduce cost function: 

𝐽(𝑧𝑀(𝑡), 𝑢𝑀(𝑡)) = lim
𝑡𝑓→∞

[∫{𝑧𝑀
T (𝑡)𝑄𝑧𝑀(𝑡) + 𝑢𝑀

T (𝑡)𝑅𝑢𝑀(𝑡)}𝑑𝑡

𝑡𝑓

0

] (17) 

Optimal control for model (16) with cost function (17) will have the 

following kind [8]: 

𝑢∗(𝑡) = 𝐾𝑧𝑀(𝑡) = −𝑅
−1[𝐵 + 𝛽∗]T𝑆𝑧𝑀(𝑡) (18) 

here, positively defined matrix S is equation Riccati solution 

𝑆[𝐴 + 𝛼∗] + [𝐴 + 𝛼∗]T𝑆 − 𝑆[𝐵 + 𝛽∗]𝑅−1[𝐵 + 𝛽∗]T𝑆 + 𝑄 = 0, (19) 

Statement. For finding 𝛼∗, 𝛽∗ ∈ Ω, there can be considered the roots 𝜆𝑖(𝜏) 

of characteristic equation 𝑑𝑒𝑡(𝐴𝑧 − 𝜆I) = 0. It’s necessary to choose parameter 

in a way that 𝑅𝑒(𝜆𝑖(𝜏
∗)) ≥ 𝑅𝑒(𝜆𝑖(𝜏)), ∀𝑖, ∀𝜏 ≠ 𝜏, 𝜏 ⊂ 𝑇, 𝜏∗ ⊂ 𝑇. 

As an alternative way to find  𝛼∗,  𝛽∗, it’s proposed to consider the norm 

𝑀 = ‖𝑧(𝑡, 𝜏)‖2 =
1

2
𝑧T(𝑡, 𝜏)𝑧(𝑡, 𝜏). Desirable trajectories of the system lead to 
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the biggest derivative by time for norm 𝑀 : 𝑀̇(𝜏∗) > 𝑀̇(𝜏) ,  ∀𝜏 ≠ 𝜏∗ ,  𝜏 ⊂

𝑇, 𝜏∗ ⊂ 𝑇. 

For to find 𝛼∗  to system (16), considered without control, one of the 

proposed methods is applied. After finding 𝛼∗, the initial system is considered as 

system (16) with control (18), built up at 𝛽∗ = 0: 

𝑢(𝑡) = −𝑅−1𝐵T𝑆𝛼𝑧(𝑡), (20) 

where 𝑆𝛼 – Riccati equation solution at 𝛽∗ = 0. 

The delay by control 𝛾 has not participated in control synthesis (20) on the 

given stage. 

Let consider the system of the kind 

𝑑

𝑑𝑡
𝑧𝑀(𝑡) = [𝐴 + 𝛼(𝑥(𝑡), 𝜏

∗)]𝑧𝑀(𝑡) + [𝐵1 +

𝛽(𝑥, 𝛾)]𝐾𝑧𝑀(𝑡, 𝛾), 

(21) 

where 𝐾 = −𝑅−1𝐵T𝑆𝛼. Here, matrix 𝑆𝛼 – the solution of Riccati equation (19) 

with the parameter  𝜏 = 𝜏∗, found on the previous stage, and 𝛽∗ = 0. 

Let find the worst delay value 𝛾∗ ⊂ Γ, applying one of the proposed methods 

from the previous stage to the system (21). 

Aftereffect 𝜏∗ and delay 𝛾∗ obtained values are applied for the calculation 

of the solution of Riccati equation 𝑆𝛼𝛽 (19). 

The control, that takes into account the worst values of delay and 

aftereffect, is represented in the form of: 

𝑢(𝑡) = −𝑅−1[𝐵1 + 𝛽(𝑥, 𝛾)]
T𝑆𝛼𝛽𝑧(𝑡), (22) 

where 𝑆 – Riccati equation solution: 

 𝑆𝛼𝛽[𝐴 + 𝛼
∗] + [𝐴 + 𝛼∗]T𝑆𝛼𝛽 − 𝑆𝛼𝛽[𝐵 + 𝛽

∗]𝑅−1[𝐵 + 𝛽∗]T𝑆𝛼𝛽 + 𝑄 = 0. 
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Fifth Chapter considers differential game with null sum with the big 

number of players wherein there are n + 1 players in a whole: n pursuers and one 

evader. Pursuers try to catch avoiding from them evader. Meanwhile, the 

suppositions are made that watching amongst any pair pursuer-evader is mutual, 

and watching amongst two pursuers is not mutual obligatory and, at least, a one 

pair pursuer-evader exists such that this pair every member watches the other, 

and every pursuer watches, at least, a one other partner in pursuit. The example 

of such game is interception of a scout drone, striving to fly up to a secret object. 

Let consider the task of evader pursuit on m-dimensional Euclidean space 

with game finite time: 𝑡 ∈ [𝑡0, 𝑡𝑓]. 

Let 𝑦(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡),… , 𝑦𝑚(𝑡)]
T, i.e. 𝑦(𝑡) ∈ 𝑅𝑚 – evader position, and 

𝑥𝑗(𝑡) = [𝑥𝑗1(𝑡), 𝑥𝑗2(𝑡),… , 𝑥𝑗𝑚(𝑡)]
T
, i.e. 𝑥𝑗(𝑡) ∈ 𝑅

𝑚, the position of 𝑗th pursuer. 

Let introduce a distance vector (“sensitivity radius”) between an evader and 

𝑗th pursuer: 𝑧𝑗(𝑡) ∈ 𝑅
𝑚  𝑧𝑗(𝑡) = 𝑥𝑗(𝑡) − 𝑦(𝑡), 𝑗 = 1,2,… , 𝑛.  

In more compact view, if  𝑥T = [𝑥1
T, 𝑥2

T, … , 𝑥𝑛
T]  and 𝑧T = [𝑧1

T, 𝑧2
T, … , 𝑧𝑛

T], 

then   

𝑧(𝑡) = 𝑥(𝑡) − 𝟏𝑛⨂𝑦(𝑡). (23) 

Here and then symbol ⊗ means product of Kronecker, and 𝟏𝑛 - vector-

column with singular element of size 𝑛 × 1. 

To estimate actions of pursuers and an evader, dodging a meeting with 

pursuers, we introduce common cost function, which pursuers strive to minimize 

and dogging evader - to maximize in the task with null sum. 
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𝐽∑ (𝑧(∙), 𝑢𝑝(∙), 𝑢𝑒(∙)) = 𝐽𝑝 (𝑧(∙), 𝑢𝑝(∙)) − 𝐽𝑒(𝑧(∙), 𝑢𝑒(∙))

=
1

2
𝑧T(𝑡𝑓)𝐹𝑧(𝑡𝑓)

+
1

2
∫ {𝑧T(𝑡)𝑄𝑧(𝑡) + 𝑢𝑝

T(𝑡)𝑅𝑢𝑝(𝑡) − (𝟏𝑛⨂𝑢𝑒(𝑡))
T
𝑃(𝟏𝑛⨂𝑢𝑒(𝑡))} 𝑑𝑡

𝑡𝑓

𝑡0

 

(24) 

The result for classical differential game with several pursuers and linear 

feedback is presented with the following theorem which argumentum for is 

given in the dissertation text. 

Theorem. Differential game with n-pursuers and a one evader, dodging 

pursuit with dynamics (23) and cost function (24), is given. The game has 

solution at condition 𝑟𝑝 < 𝑛𝑟𝑒 if players’ strategies are defined by the following 

expressions: 

𝑢𝑝
0(𝑡) = −

1

𝑟𝑝
𝐾(𝑡)𝑧(𝑡), 

𝑢𝑒
0(𝑡) = −

1

𝑛𝑟𝑒
(𝟏𝑛

T⨂𝐼𝑚)𝐾(𝑡)𝑧(𝑡), 
(25) 

where 

𝑑

𝑑𝑡
𝐾(𝑡) = −𝐾(𝑡) [−

1

𝑟𝑝
𝐼𝑛 +

1

𝑛𝑟𝑒
(𝟏𝑛⨂𝟏𝑛

T⨂𝐼𝑚)]𝐾(𝑡) −

[𝑞𝑝 + 𝑞𝑒]𝐼𝑛, 

𝐾(𝑡𝑓) = [𝑘𝑝𝑓 + 𝑘𝑒𝑓]𝐼𝑛. 

(26) 

 

Theorem. Differential game (23), (24)  has a solution if matrices of cost 

function (24) 𝑅 and 𝑃 are connected by relation 𝑅 ≺ 𝑃. The theorem proof is 

presented in the dissertation text. 

In the differential game with distributed information, each player adopts a 

decision on the basis of just such information that’s available to him in the given 

time moment. 
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Let write down in general view the formula for vector, denoting the 

distance between jth pursuer, evader and the rest of pursuers 

𝑧̃𝑝𝑗(𝑡) = 𝑥𝑗(𝑡) − ∑ 𝑑𝑖𝑗(𝑡)𝑥𝑖(𝑡) − 𝑓𝑗(𝑡)𝑦(𝑡)
𝑛
𝑖=1 .  (27) 

If escaping evader observes other pursuers’ actions, he can possess the 

following information 

𝑧̃𝑒(𝑡) = ∑ 𝑒𝑖(𝑡)𝑥𝑖(𝑡) − 𝑦(𝑡)
𝑛
𝑖=1 . (28) 

Strategies for pursuers can look in the following way: 

𝑢𝑝𝑗
0 (𝑡) = −

𝑘𝑝(𝑡)

𝑟𝑝
𝑧̃𝑝𝑗(𝑡)

= −
𝑘𝑝(𝑡)

𝑟𝑝
[𝑥𝑗(𝑡) −∑𝑑𝑖𝑗(𝑡)𝑥𝑖(𝑡) − 𝑓𝑗(𝑡)𝑦(𝑡)

𝑛

𝑖=1

] 

(29) 

for j=1, 2, …, n.  

Let note at the consideration of strategy for escaping evader on that when 

the escaping one observes several pursuers’ actions, it forms a control, trying to 

dodge “mass center” of all detected pursuers, using available information (28) 

𝑢𝑒
0(𝑡) = −

𝑘𝑒(𝑡)

𝑟𝑒
𝑧̃𝑒(𝑡) = −

𝑘𝑒(𝑡)

𝑟𝑒
[∑ 𝑒𝑖(𝑡)𝑥𝑖(𝑡) − 𝑦(𝑡)

𝑛
𝑖=1 ]. (30) 

Parameters 𝑘𝑝(𝑡)  and 𝑘𝑒(𝑡)  in (29) and (30) are being found from the 

solutions of the equation 

𝑑

𝑑𝑡
𝑘𝑝(𝑡) − [

𝑟𝑒−𝑟𝑝

𝑟𝑒𝑟𝑝
] 𝑘𝑝

2(𝑡) −
2

𝑟𝑝
𝑘𝑝(𝑡)𝑘𝑒(𝑡) + 𝑞𝑝 = 0 , 

𝑘𝑝(𝑡𝑓) = 𝑘𝑝𝑓,  
(31) 

𝑑

𝑑𝑡
𝑘𝑒(𝑡) − [

𝑟𝑒−𝑟𝑝

𝑟𝑒𝑟𝑝
] 𝑘𝑒

2(𝑡) −
2

𝑟𝑒
𝑘𝑝(𝑡)𝑘𝑒(𝑡) + 𝑞𝑝 = 0 , 

𝑘𝑒(𝑡𝑓) = 𝑘𝑒𝑓.  
(32) 

 Let note at the consideration of strategy for escaping evader (30) on 

that in the case if the escaping one observes several pursuers in its sensitivity 
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radius, the escaping one would form such control that would try to “fly away” 

from mass center of all observed pursuers. 

In the case when an evader creates artificial noise with the purpose to 

hinder a pursuer and get advantage in the game, pursuers will receive 

information on escaping evader with noises. 

The Sixth Chapter shows the results of mathematical modelling of the work of 

the algorithms proposed in previous chapters. Regulator with discretely changing 

parameters is looked to UAV  

𝐼 = [
0.1 0 0
0 0.1 0
0 0 0.15

] at net accuracy 𝜀 = 0.1. 

As initial conditions, the vector was chosen 

(𝑝 𝑞 𝑟 𝜆0 𝜆1 𝜆2 𝜆3)
T =

(0 0.5 0.1 0.95 0.26 −0.03 −0.14)T. 

Control is capable to lead a quadcopter in horizontal position and hold it 

such. 

For to demonstrate observer’s work, noisy measurer is introduced, the 

precise value of one of the inertia tensor components is unknown. UAV control 

system, consisting of an observer, adaptation algorithm and regulator, leads 

UAV to horizontal state. 
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Figure 5. Trajectory of quaternion components’ changes  

 

 

Figure 6. α parameter optimization 

Let make comparison of Kalman-Bucy filter efficiency without adaptation 

and with it. For that, let subtract the value of Kalman-Bucy filter cost function 

without adaptation from the value of Kalman-Bucy filter cost function with 

adaptation. Figure 7 demonstrates the graph of this difference. Adaptation 

absence leads to cost function bigger value because filter doesn’t optimize its 

work in the conditions of uncertainty of parametrical noise.  
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Figure 7. Difference of Kalman-Bucy filter cost function with adaptation 

and without it 

 

The dissertation Sixth Chapter also demonstrates the work of stabilization 

algorithm for simple system with delay and aftereffect impact.  

Differential game for 3 pursuers and a one evader is modelled. The work 

presents the graphs of transition processes at classical game, game with 

distributed information at noise absence and presence.  

Work Major Results  

1. Algorithm of the realization of SDRE control in the conditions of 

limitation of hardware resources, which stabilize quadcopter in horizontal 

position, has been proposed; 

2. Kalman-Bucy adaptive filter has been proposed which allows to 

pursue the identification of quadcopter characteristics and which is capable to 

counteract noises; 

3. SDRE control has been synthetized which uses identification results 

obtained by filter and stabilizes a drone; 

4. Control has been synthetized that’s capable to stabilize system under 

the influence of delay and aftereffect impacts; 

5. Control by the set of pursers and dodging one in the task of 

differential game with null sum has been synthesized; 
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6. Numeric modelling of the work of obtained algorithms has been 

performed in the task of quadcopter stabilization and applications.  
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